CHEMISTRY

- Sum of number of lone pair in central atom IF5 and IF7
- Ans.

- 2. Which is diamagnetic in nature
 - (1) $[Fe(F)_6]^{3-}$
- (2) $[Fe(CN)_6]^{3-}$
- (3) $[Fe(NH_3)_6]^{3+}$ (4) $[Co(Cl)_6]^{3-}$
- Number of bent shape molecule O₃, SO₂, I₃-, N₃-, NO₂-3.
- Ans.
- O₃, SO₂, NO₂-Sol.
- Match the following list 4.

List I

List II

(A) Steel

- (P) Gypsum
- (B) Thermal power plant
- (Q) Slag
- (C) Fertilizers industries
- (R) Flyash

(D) Paper mills

- (S) Biodegradable wastes
- Ans. (A)-Q; (B) - R; (C) - P; (D) - S
- 5. How many unpaired electron in potassium ferrocyanide

Ans.

Sol. $K_4[Fe(CN)_6]$

 $Fe^{2+} = [Ar]3d^6$

 $CN^- \rightarrow SFL$

no. of unpaired $e^- = 0$

- 6. No. of molecules and moles in 2.8375 litres of O2 at STP is
- $n_{O_2} = \frac{2.8375}{22.4} = 0.125 \text{ mole}$ Sol.

$$N_{O_2} = n_{O_2} \times N_A$$

 $= 0.125 \times 6.02 \times 10^{23}$

- 7. The compound which does not exist
 - (1) $BeCl_2$
- (2) NaO₂
- (3) PbEt₄
- $(4) (NH_4)_2 BeF_4$

- (2)Ans.
- If final volume is $\frac{1}{8}^{th}$ of initial volume for an ideal gas then find ratio of initial and final pressure. 8.
- 08.00 Ans.

Sol.
$$P_1V_1 = P_2V_2$$

$$\frac{P_2}{P_1} = \frac{V_1}{V_2} = \frac{V}{V/8} = 8$$

- **9.** One which does not stabilise secondary & tertiary protein?
 - (1) H—H linkage

(2) S—S linkage

(3) Van-derwaal's force

(4) Hydrogen bonding

- **Ans.** (1)
- **10.** Which of the following Stabilizer is used for concentrating sulphide ore:
 - (1) Fatty acids
- (2) Pine oil
- (3) Cresol
- (4) Xanthates

- **Ans.** (3)
- 11. De-broglie wavelength of gas at T = 300 K is λ , find the De-broglie wavelength of its molecule at T = 600 K.
- Ans. $\frac{\lambda}{\sqrt{2}}$
- $\textbf{Sol.} \qquad \lambda \, \propto \, \frac{1}{\sqrt{T}}$
 - $\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{T_2}{T_1}} = \sqrt{2}$
 - $\lambda_2 = \frac{\lambda_2}{\sqrt{2}} \Rightarrow \frac{\lambda}{\sqrt{2}}$
- 12. Enthalpy of adsorption and enthalpy of formation of micelle are respectively
 - (1) Positive, Positive

(2) Positive, Negative

(3) Negative, Positive

(4) Negative, Negative

- Ans. (3)
- 13. The pressure value of a gas is 930.2 mm Hg. The volume is then reduced to 40% of its initial value at a constant temperature. Then what is the final pressure (in mm Hg)
- **Ans.** 2325.5
- **Sol.** $P_1V_1 = P_2V_2$

$$P_2 = P_1 \times \frac{V_1}{V_2} = 930.2 \times \frac{V}{0.4 \, V}$$

- ≃ 2325.5 mm
- **14.** Find the major product

$$CH_2-CH_3$$
 CH_2-CH_3
 CH_2-CH_3
 CH_3-CH_3
 CH_3-CH_3
 CH_3-CH_3
 CH_3-CH_3
 CH_3-CH_3
 CH_3-CH_3
 CH_3-CH_3
 CH_3-CH_3
 CH_3-CH_3

Ans.

15. Select the correct option:

$$2CO(g) + O_2(g) \longrightarrow 2CO_2(g)$$

$$C(graphite) + O_2(g) \longrightarrow 2CO_2(g)$$

;
$$\Delta H = -y KJ/mol$$

Then ΔH for, C(graphite) + $\frac{1}{2}$ O₂(g) \longrightarrow CO(g)

(1)
$$x + \frac{y}{2}$$

(2)
$$\frac{x-2y}{2}$$

(3)
$$\frac{x+2y}{2}$$

(4)
$$\frac{x-y}{2}$$

Sol. $CO_2(g) \longrightarrow CO(g) + \frac{1}{2}O_2(g) : \Delta H = \frac{x}{2}$

$$C_{(graphite)} + O_2(g) \longrightarrow CO_2(g)$$
; $\Delta H = -y$

$$C_{graphite} + \frac{1}{2}O_2(g) \longrightarrow CO(g) : \Delta H = \frac{x}{2} - y$$

$$= \frac{x - 2y}{1}$$

16. Prolongated heating ferrous ammonium sulphate is avoided to prevent:

- (1) Oxidation
- (2) Reduction
- (3) Hydrolysis
- (4) Breaking

Ans. (1)

17. Read the following two statements.

Statement I: Potassium dichromate is used in volumetric analysis

Statement II: K₂Cr₂O₇ is more soluble in water than Na₂Cr₂O₇

- (1) Both statements I and II are correct
- (2) Both statements I and II are incorrect
- (3) Statement I is correct and II is incorrect
- (4) Statement I is incorrect and II is correct

Ans. (3)

18. The degree dissociation of monobasic acid is 0.3. By what percent is the observed depression in freezing point greater than the calculated depression in freezing point?

Ans. 30.00

Sol.
$$(\Delta T_f)_O = ik_f m$$

$$(\Delta T_f)_C = k_f m$$

$$\frac{\left(\Delta T_{f}\right)_{O} = \left(\Delta T_{f}\right)_{C}}{\left(\Delta T_{f}\right)_{C}} \times 100 = (I - 1) \times 100$$

$$H_A \longrightarrow H^+ + A^-$$

1

$$1-\alpha$$

χ

$$I = 1 + \alpha$$

$$= (1 + \alpha - 1) \times 100$$

$$= 0.30 \times 100$$

- **19.** Compute the angular momentum in second orbit, if L is the angular momentum of He electron in the first orbit of hydrogen atom.
- Ans. 2L

Sol.
$$(mvr) = \frac{nh}{2\pi}$$

$$\frac{\left(mvr\right)_{1}}{\left(mvr\right)_{2}} = \frac{n_{1}}{n_{2}}$$

$$(mvr)_2 = 2L$$

20. Match the column

Column-I

Column-II

Degree of freedom

(P)
$$F_T = 3$$
, $F_R = 2$, $F_V = 1$

(Q)
$$F_T = 3$$
, $F_R = 0$, $F_V = 0$

(R)
$$F_T = 3$$
, $F_R = 3$, $F_V = 3$

(S)
$$F_T = 3$$
, $F_R = 2$, $F_V = 4$

21. Correct order of bond dissociation energy order

(1)
$$HF > HCl > HBr > HI$$

(2)
$$HCl > HF > HBr > HI$$

(4)
$$HCl = HF = HBr \neq HI$$

- **Ans.** (1)
- **22.** $Na_2O + H_2O \rightarrow 2X$

$$Cl_2O_7 + H_2P \rightarrow 2Y$$

Then find the sum of number of oxygen atom in X & Y

- **Ans.** 05.00
- **Sol.** Na₂O + H₂O \rightarrow 2NaOH

$$Cl_2O_7 + H_2O \rightarrow 2HClO_4$$

no. of oxygen atoms = 1 + 4 = 5

- **23.** Which of the following is Nessler's Reagent
 - (1) K₂Hgl₄
- (2) K_2Hgl_2
- (3) K_2HgI
- (4) None

Ans. (1)

24. Match the following list

Column-I

- (A) Nylon-2, Nylon-6
- (B) Urea formaldehyde resin
- (C) Dacron
- (D) Nylon-6,6
- (1) (A)- R, (B) -P, (C) Q, (D) S
- (2) (A)- S, (B)-R, (C) P, (D) -Q
- (3) (A)- Q, (B) -P, (C) S, (D) R
- (4) (A)-R, (B)-S, (C)-P, (D)-Q

Ans. (1

Column-II

- (P) Thermosetting
- (Q) Polyester
- (R) Biodegradable
- (S) Used for making bristles of brushes

- **25.** The pair of compound from the following pairs having both the compounds with net zero dipole moment is
 - (1) CH₂Cl₂; CHCl₃
 - (2) Benzene; P-Anisidine
 - (3) 1,4-chlorobenzene; 1, 3,5-trichlorobenzne
 - (4) Cis-dichloroethene; Trans-dichloroethene

Ans. (3)

26.

$$FeO_4^{2-} \xrightarrow{E_1^{\circ} = +2.20 \,\text{V}} Fe^{3+} \xrightarrow{E_2^{\circ} = +0.77 \,\text{V}} Fe^{2+} \xrightarrow{E_3^{\circ} = -0.44 \,\text{V}} Fe$$

$$E^0_4 = ?$$

Value of E₄° is close to

- (1) 1.00 V
- (2) 2.00 V
- (2) (3) 2.50 V
- (4) 0.50 V

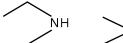
Ans. (2)

Sol.
$$E_4^\circ = \frac{3 \times 2.2 + 1 \times 0.77}{(3+1)} = 1.84$$

- **27.** Mixture of A and B is added to column containing adsorbent for separation using a solvent. A is eluted first and B is eluted last. Then B has:
 - (1) High R_f, less adsorption
 - (2) Low R_f, strongly adsorbed
 - (3) High R_f, strong adsorption
 - (4) Low R_f, weakly adsorbed

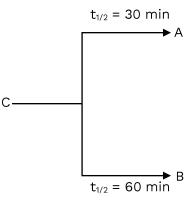
Ans. (2)

28. Statement I: Reduction potential M³⁺/M²⁻ is more for Fe than Mn


Statement II: V²⁺ has magnetic moment between 4.4-5.2 BM.

- (1) Both Statement I and statement II are correct.
- (2) Both Statement I and statement II are incorrect.
- (3) Statement I is correct but statement II is incorrect.
- (4) Statement I is incorrect but statement II is correct.

Ans. (2)


29. How many compounds can be easily prepared by Gabriel phthalimide synthesis, which on reaction with Hinsberg reagent produces a compound which is soluble in KOH.

$$NH_2$$

Ans. 02.00

30. For the first order reaction consider the following reaction calculate the overall half life of C in minute.

Ans. 20.00

Sol. For half life of C

$$\frac{1}{t_{C_{1/2}}} = \frac{1}{t_{A_{1/2}}} + \frac{1}{t_{B_{1/2}}}$$
$$\frac{1}{t_{C_{1/2}}} = \frac{1}{30} + \frac{1}{60}$$
$$\frac{1}{t_{C_{1/2}}} = \frac{2+1}{60}$$

$$t_{C_{1/2}} = 20 \text{ min}$$