

MATHEMATICS

1. If slope of tangent at any point p(x, y) on the curve y = f(x) is $\frac{x^2 + y^2}{2 \times y}$ and y(1) = 2, then find y(8)

Ans.
$$6\sqrt{2}$$

Sol. $\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$
 $2xy \ dy = x^2 \ dx + y^2 \ dy$
 $2xy \ dy - y^2 \ dx = x^2 \ dx$
 $d\left(\frac{y^2}{x}\right) = dx$
 $\Rightarrow \frac{y^2}{x} = x + C$
 $\Rightarrow y^2 = x(x + c)$
 $\Rightarrow y^2 = x(x + c)$
 $y = \pm \sqrt{x(x + c)}$
 $\therefore y(1) = 1 \Rightarrow C = 1$
 $y = \sqrt{x(x + 1)}$
 $y(8) = \sqrt{8 \times 9} = 6\sqrt{2}$

2. Coefficient of x^7 in $(1 - x + x^3)^{10}$ Ans. $\frac{10!}{4!5!} - \frac{10!}{3!7!} - \frac{10!}{2!7!}$

Sol. Coefficient x^7 in $(1 - x + x^3)^{10}$

$$\frac{10!}{a!b!c!} (1)^{a} (-x)^{b} (x^{3})^{c}$$

a + b + c = 10

b + 3c = 7

С	b	а	
0	7	3	(1)
1	4	5 .	(1)
	1		

- $= -\frac{10!}{3!7!0!} + \frac{10!}{1!4!5!} \frac{10!}{2!1!7!}$ $\Rightarrow 10! \left(\frac{1}{4!5!} \frac{1}{3!7!} \frac{1}{2!7!}\right)$ $\Rightarrow \frac{10!}{4!5!} \frac{10!}{3!7!} \frac{10!}{2!7!}$
- **3.** There is a sheet of dimension 30cm × 30cm, and if we make an open box with maximum volume using this sheet, then find the surface area of this box.

JOIN OUR TELEGRAM CHANNEL 🕢 AJITLULLA

Ans. 800

Sol.

v = (30

$$v = (30-2x)^{2} \times x$$

$$\frac{dy}{dx} = (30-2x)^{2} + x \cdot 2(30-2x)(-2)$$

$$\frac{dv}{dx} = (30-2x)\{30-2x-4x\}$$

$$\frac{dv}{dx} = (30-2x)\{30-6x\}$$

$$= (2x-30) (6x-30)$$
For volume max, $\frac{dv}{dx} = 0$

$$+ 5 - 15 + 3$$

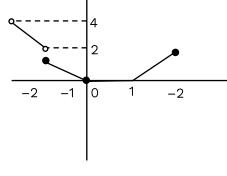
$$\Rightarrow (30-2x) (30-6x) = 0 \Rightarrow x = 15, 5$$
For max (x = 5)
So, surface Area = 400 + 4 × 100 = 800

4. If $f(x) = \begin{cases} x[x], & -2 < x < 0 \\ (x-1)[x], & 0 < x < 2 \end{cases}$ and "m' are the points of discontinuity and "n" are the points of non-

differentiability then find m + n?

Ans.

4



Sol.

m = 1, n = 3 m + n = 4

5. Find the total number of values of $n \in Z$, given that $\left|n^2 - 10n + 19\right| < 6$.

Ans. 7

Sol. $-6 < x^2 - 10x + 19 < 6$ Case-(I) $\Rightarrow x^2 - 10x + 25 > 0$ $(x - 5)^2 > 0$ Case-(II) $\Rightarrow x^2 - 10x + 13 > 0$ $x = \frac{10 \pm \sqrt{100 - 52}}{2}$

JOIN OUR TELEGRAM CHANNEL </

- $= \frac{10 \pm \sqrt{40}}{2}$ $= \frac{10 \pm 4\sqrt{3}}{2}$ $5 2\sqrt{3} < x < 5 + 2\sqrt{3}$
- 6. Equation of an ellipse is $x^2 + 9y^2 = 9$, which cuts the positive x and positive y-axis at A & B. Suppose P is any point on auxiliary circle Find maximum area of triangle PAB.

Ans.
$$\frac{1}{2} \left(3 + 3\sqrt{10} \right)$$

Sol. Area
$$= \frac{1}{2} \begin{vmatrix} 3 & 0 & 1 \\ 0 & 1 & 1 \\ 3\cos\theta & 3\sin\theta & 1 \end{vmatrix}$$
$$= \frac{1}{2} \left(3 - 3\cos\theta - 9\sin\theta \right)$$

Maximum Area
$$= \frac{1}{2} \left(3 + 3\sqrt{10} \right)$$

- **7.** There is a set of numbers {1, 2, 3, 4, 5, 6, 7} then find how many numbers are formed such that three numbers {1, 2, 4} are not together as well as {3, 5, 6, 7} are also not together.
- **Ans.** 4680

Sol.

 $7! -3! \times 4! \times 2!$ $\Rightarrow 7 \times 6 \times 5 \times 4! -3! \times 2! \times 4!$ $\Rightarrow 4! [210 - 12]$ $\Rightarrow 4! \times 198 = 198 \times 4! = 4752$

8. If
$$x^2 f(x) - x = 4 \int_{0}^{x} t f(t) dt \& f(1) = \frac{2}{3}$$
. Find 18f(3)

Ans. 160

Sol.
$$x^{2}f(x) - x = 4\int_{0}^{x} t f(t)dt$$

 $x^{2}f'(x) + 2x f(x) - 1 = 4x f(x)$
 $\Rightarrow x^{2} \frac{dy}{dx} = 2xy + 1$
 $\Rightarrow \frac{dy}{dx} = \frac{2xy + 1}{x^{2}}$
 $\Rightarrow \frac{dy}{dx} = \frac{2y}{x} + \frac{1}{x^{2}}$
 $\Rightarrow \frac{dy}{dx} - 2y\left(\frac{1}{x}\right) = \frac{1}{x^{2}}$ (Linear D.E)
 $I.F = e^{\int_{x}^{-2} dx} = e^{-2\ln x} = \frac{1}{x^{2}}$
Solution of D.E

JOIN OUR TELEGRAM CHANNEL 🕣 AJITLULLA

$$y \times \frac{1}{x^2} = \int \frac{1}{x^4} dx$$

$$\Rightarrow \frac{y^2}{x^2} = \frac{-1}{3x^3} + C$$

$$\Rightarrow \frac{2}{3} = \frac{-1}{3} + C \Rightarrow C = 1$$

So, $\frac{y}{x^2} = \frac{1}{3x^3} + 1 \Rightarrow \frac{y}{9} = \frac{-1}{81} + 1$

$$\Rightarrow y = 9 \left[\frac{80}{81} \right] = \frac{80}{9}, 18y = 160$$

9. Given that $\frac{2z+2i}{2z-i}$ is purely imaginary. Such that z = x + iy and $x^2 + y = 0$ then find $y^2 + y + 1 = ?$

Ans.
$$\frac{3}{4}$$

Sol. Let
$$w = \frac{2z+2i}{2z-i}$$
 in purely imaginary.

$$\Rightarrow w = -\overline{w} \Rightarrow \frac{2z+2i}{2z-i} = \frac{2\overline{z}-2i}{2\overline{z}+i}$$

$$\Rightarrow (2z+2i)(2\overline{z}+i) = (2z-i)(-2\overline{z}+2i)$$

$$\Rightarrow 4 | z |^2 + 2iz + 4i\overline{z} - 2 = -4 | z |^2 + 4iz + 2i\overline{z} + 2$$

$$\Rightarrow 8 | z |^2 - 2iz + 2i\overline{z} - 4 = 0$$

$$\Rightarrow \frac{m}{n}$$

$$\Rightarrow 8(x^2 + y^2) + 4y - 4 = 0$$

$$2x^2 + 2y^2 + y - 1 = 0$$

$$\Rightarrow -2y + 2y^2 + y - 1 = 0$$

$$\Rightarrow 2y^2 - y - 1 = 0$$

$$y = 1 \text{ or } y = -\frac{1}{2} \text{ Accepted}$$

10. Find the value of $96\cos\left(\frac{\pi}{33}\right)\cos\left(\frac{2\pi}{33}\right)\cos\left(\frac{4\pi}{33}\right)\cos\left(\frac{8\pi}{33}\right)\cos\left(\frac{16\pi}{33}\right)=?$

1 32

Sol. let
$$\theta = \frac{\pi}{3^3}$$
 then
 $y = \cos\theta$. $\cos 2\theta$. $\cos 2^2\theta$. $\cos 2^3\theta$. $\cos 2^4\theta$
 $y = \frac{\sin 2^5\theta}{2^5\sin\theta} = \frac{\sin 32\theta}{32\sin\theta}$

$$y = \frac{\sin\left(\frac{32\pi}{33}\right)}{32\sin\left(\frac{\pi}{33}\right)} = \frac{\sin\left(\pi - \frac{\pi}{33}\right)}{32\sin\left(\frac{\pi}{33}\right)} = \frac{11}{32}$$

JOIN OUR TELEGRAM CHANNEL

.

$$96y = 3$$

 $y = \frac{3}{96} = \frac{1}{32}$

 $\frac{{}^{13}C_6}{{}^{13}C2}$

11. If the coefficients of x^7 in $\left(ax - \frac{1}{bx^2}\right)^{13}$ and x^{-5} in $\left(ax + \frac{1}{bx^2}\right)^{13}$ are equal then find a^4 . $b^4 = ?$

Sol. Coefficient $x^7 \Rightarrow {}^{13}C_r (ax)^{13-r} \left(-\frac{1}{bx^2}\right)^r$ ${}^{3}C_r a^{13-r} \left(-\frac{1}{b}\right)^r x^{13-3r}$ $13 - 3r = 7 \Rightarrow r = 2$

Coefficient
$$x^{-5} \Rightarrow {}^{13}C_r (ax)^{13-r} \left(\frac{1}{bx^2}\right)^r$$

 $13 - 3r = -5 \Rightarrow 3r \pm 5 \ r = 6$
 ${}^{13}C_2 a^{11} \left(-\frac{1}{b}\right)^2 = {}^{13}C_6 a^7 \frac{1}{b^6}$
 $a^4 b^4 = \frac{{}^{13}C_6}{{}^{13}C_6}$

12. In an AP 3, 8.....,373 find the sum of those term which are not divisible by 3.Ans. 9525

Sol.

No. which are divisible by 3 in this AP are \Rightarrow 3, 3 + 5 × 3, 3 + 5 × 6,.....3 + 5 × 72. Their sum = (3) + (3 + 5.3) + (3 + 5.6)+.....(3 + 5.72)

= 3. (25) + 5(3 + 6+.....72)

$$= 75 + 15 \frac{\left(24 \times 25\right)}{2}$$

= 4575

 \Rightarrow a = 3,

Sum of All numbers = 3 + 8 +373

$$= \frac{75}{2} (3+373)$$
$$= \frac{75}{2} (376) = 14100$$

Hence, required Ans = 14100 - 4575 = 9525

13. Find Perpendicular distance of point of intersection of line $\frac{x-3}{-2} = \frac{y-5}{3} = \frac{z-1}{5}$ and plane x + y + z = 12 to the plane 2x + 5y + 7z = 32

JOIN OUR TELEGRAM CHANNEL 🕢 AJITLULLA

Ans.
$$\frac{29}{\sqrt{78}}$$

Sol. let point is $(-2\lambda + 3, 3\lambda + 5, 5\lambda + 1)$
 $\Rightarrow 6\lambda + 9 = 12$
 $\Rightarrow \lambda = \frac{1}{2}$
 $\Rightarrow \text{ point is } \left(2, \frac{13}{2}, \frac{7}{2}\right)$
Distance $= \left|\frac{4 + \frac{65}{2} + \frac{49}{2} - 32}{\sqrt{78}}\right|$
 $= \frac{29}{\sqrt{78}}$

14. Class intervals and their frequencies are given as follows:

2–10	10–18	18–24	24-32
1	12	10	x

and Mean for the distribution is 18 then find variance?

Ans. 2280.31

Sol.

Class	Xi	fi	$x_i f_i$	$(x_i f_i)^2$			
2–10	6	1	6	36			
10–18	14	12	168	21224			
18–24	21	10	210	44100			
24-32	28	х	28x	784x			
√lean = 4	$\frac{\sum x_i r_i}{\sum f_i}$						
$\Rightarrow 18 = \frac{6+168+210+28x}{23+x}$							
⇒18 × 23	+ 18x	= 384	4 + 28×	$x \Rightarrow 10x =$	= 30 ⇒ x =		
$\sigma^{2} = \frac{\sum f_{i} x_{i}}{\sum f_{i}}$	$\frac{2}{2} - \left(\sum_{i=1}^{2} \frac{1}{2}\right)$	$\frac{\sum f_i x_i}{f_i}$	2				
$5^2 = \frac{36+2}{36+2}$	21224 1+1	+ 4410 12 + 10	00 + 78) + 3	<u>4 × 3</u> – 18	3 ²		
$\sigma^2 = \frac{67712}{26}$	2 	4 = 26	04.307	'6 – 324			
$\Rightarrow \sigma^2 = 228$	30.31						
	. r :	sin²(x) (, <u> </u>		()		

15. Integrate
$$I = \int e^{\sin^2(x)} (\sin 2x \cos x - \sin(x)) dx$$

Ans. $e^{\sin^2(x)} \cos x + c$
Sol. $I = \int e^{\sin^2(x)} \sin(2x) \left(\cos x - \frac{1}{2\cos(x)}\right) dx$

JOIN OUR TELEGRAM CHANNEL </

3

Let $sin^2(x) = t$ So, sin 2x dx = dt

So,
$$I = \int e^{t} \left(\sqrt{1-t} - \frac{1}{2\sqrt{1-t}} \right) dt$$

Hence,
$$\int e^{t} \left(f(t) + f'(t) \right) dt = e^{t} f(t) + c$$
$$I = e^{t} \sqrt{1-t} + c = e^{\sin^{2}(x)} \cos(x) + c$$

16. Two dice are rolled and sum of numbers of two dice is N then probability that $2^{N} < N!$ is $\frac{m}{n}$, where m and n are coprime, then 11m – 3n is?

Ans. 85

Sol. All possible sums = $\{2, 3, 4, ..., 12\}$ But for N! > 2^N we must have $n \ge 4$

So, favorable sums = {4, 5, ..., 12}

Required probability $= 1 - P(S_2 \cup S_3)$

Where, $P(S_2 \cup S_3)$ = probability of sum either 2 or 3

$$= \frac{1}{6} \times \frac{1}{6} + \frac{1}{6} \times \frac{1}{6} \times 2$$
$$= \frac{1}{12}$$

Hence, required probability $= 1 - \frac{1}{12} = \frac{11}{12}$ So, m = 11 & n = 12 Hence, 11 × m - 3 × n = 85

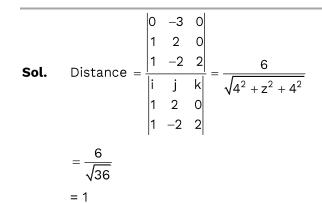
17. If the number of ways in which a mixed double badminton can be played such that no couples played into a same game is 840. Then find the number of players.

Ans. 16

- Sol. $H_1 \ H_2 \ H_3 \ H_4....H_n$ $W_1 \ W_2 \ W_3 \ W_4....W_n$ So, ${}^nC_2.{}^{n-2}C_2 \times 2 = 840$ $\Rightarrow \frac{n(n-1)}{2}.\frac{(n-2)(n-3)}{2} = 420$ $\Rightarrow n(n-1) \ (n-2) \ (n-3) = 5 \times 6 \times 7 \times 8$ So, n = 8Total number of players = 2n = 16
- **18.** Find the shortest distance between the lines: $\frac{x-2}{1} = \frac{y}{2} = \frac{z-1}{0}; \quad \frac{x-2}{1} = \frac{y-3}{-2} = \frac{z-1}{2}$

Ans. 1

JOIN OUR TELEGRAM CHANNEL 🤝 AJITLULLA



JOIN OUR TELEGRAM CHANNEL </