Use Code AT24 To Buy Unacademy Subscription

MATHEMATICS

1. Number of ways to form 4 letter word from letters of the word 'UNIVERSE', such that it has 2 vowels and 2 consonant :
(A) 504
(B) 302
(C) 106
(D) 504

Ans. (A)
Sol. Vowels: U, I, E, E
Consonant : N, V, R, S
$\left[\begin{array}{cc} & {[2 \text { alike } \rightarrow 1]} \\ \text { Vowels }- & \\ & {\left[2 \text { different } \rightarrow{ }^{3} \mathrm{C}_{2} \cdot 2^{1}=6\right]}\end{array}\right]$

So, number of words $={ }^{4} \mathrm{C}_{2} \times 12 \times 7=504$
2. Find the rank of word 'PUBLIC"' in dictionary.
(A) 581
(B) 582
(C) 580
(D) 583

Ans. (B)
Sol. B, C, I, L, P, U
Rank $=(4 . \underline{5}+4 \underline{4}+2 \underline{2}+2)=582$
3. Given that $f(x)+f(\pi-x)=\pi^{2}$, find the value of $\int_{0}^{\pi} f(x) \sin x d x$.
(A) π^{2}
(B) $2 \pi^{2}$
(C) $\pi^{2} / 3$
(D) 0

Ans. (A)
Sol. $\quad I=\int_{0}^{\pi} f(x) \sin x d x$
Apply Property:
$I=\int_{0}^{\pi} f(\pi-x) \sin (\pi-x) d x$
$=\int_{0}^{\pi}\left(\pi^{2}-f(x)\right) \sin x d x$
$I=\pi^{2} \int_{0}^{\pi} \sin x d x-1$
$21=2 \pi^{2}$
$\mathrm{I}=\pi^{2}$
4. Given that $1^{2}-2^{2}+3^{2}-4^{2}+---+2023^{2}=(1012) m^{2} n$ and $(\operatorname{gcd})(m, n)=1$ then find the value of $m^{2}-n^{2}$.
Ans. 240
Sol. $\quad-(1+2+3+\ldots . .+2022)+(2023)^{2}$
$(2023)^{2}-\frac{(2022)(2023)}{2}$
(2023) (1012) $=(1012) m^{2} n$
$\Rightarrow(1012)(7)(17)^{2}=(1012) \mathrm{m}^{2}(\mathrm{n})$
$\therefore \mathrm{m}=17$
$\mathrm{n}=7$
$\therefore \mathrm{m}^{2}-\mathrm{n}^{2}=240$

Use Code AT24 To Buy Unacademy Subscription

5. If Probability of throwing three dice such that each dice has different outcome is $\frac{p}{q}$. Then value of $q-p$ is:
(A) 4
(B) 3
(C) 5
(D) 6

Ans. (A)
Sol. Probability $=\frac{{ }^{6} C_{3} \mid 3}{6^{3}}=\frac{5}{9}=\frac{p}{q}$
$\therefore q-p=4$
6. There are 100 students, 70 of them are good in English and 55 are good in Hindi. a students are good in English only and β students are good in Hindi only. Then find the eccentricity of $25 \beta^{2} x^{2}+\alpha^{2} y^{2}=\alpha^{2} \beta^{2}$:
(A) $\frac{\sqrt{91}}{10}$
(B) $\frac{\sqrt{91}}{11}$
(C) $\frac{\sqrt{92}}{10}$
(D) $\frac{\sqrt{92}}{11}$

Ans. (A)
Sol. English (A), Hindi (B)
$n(A)=70, \quad n(A \cap B)=100=70+55-n(A \cap B)$
$n(B)=55$
$n(A \cap B)=25$
$n(A)-n(A \cap B)=\alpha$
$\therefore \alpha=45$
$n(B)-n(A \cap B)=\beta$
$\therefore \beta=30$
ellipse $\frac{x^{2}}{\left(\frac{\alpha}{5}\right)^{2}}+\frac{y^{2}}{\beta^{2}}=1$
$\frac{x^{2}}{9^{2}}+\frac{y^{2}}{30^{2}}=1$
$\therefore 9^{2}=30^{2}\left(1-\mathrm{e}^{2}\right)$
$e^{2}=\frac{91}{100}$
$e=\frac{\sqrt{91}}{10}$
7. Given that coefficient of x^{7} in $\left(a x^{2}+\frac{1}{2 b x}\right)^{11}=A$ and the coefficient of x^{-7} in $\left(a x+\frac{1}{3 b x^{2}}\right)^{11}=B$.
then choose the correct options if $A=B$.
(A) $729 a=32 b$
(B) $32 \mathrm{a}=729 \mathrm{~b}$
(C) $32 \times 729=a b$
(D) $32=729 \mathrm{ab}$

Ans. (D)
Sol. $\left(a x^{2}+\frac{1}{2 b x}\right)^{11} \rightarrow x^{7}$
$T_{r+1}={ }^{11} C_{r}\left(a x^{2}\right)^{11-r}\left(\frac{1}{2 b x}\right)^{r}$
$T_{r+1}={ }^{11} C_{r} a{ }^{11-r} \frac{1}{(2 b)^{r}} x^{22-3 r}$
$\Rightarrow 22-3 r=7 \Rightarrow 3 r=15$
$r=5$

Use Code AT24 To Buy Unacademy Subscription

$A={ }^{11} C_{5}-a^{6} \frac{1}{2^{5} b^{5}}$
$T_{r+1}={ }^{11} C_{r}+1(a n)^{11-r}\left(\frac{1}{3 b x^{2}}\right)^{r}$
$T_{r+1}={ }^{11} C_{r} a^{11-r} \frac{1}{(3 b)^{r}} x^{11-3 r}$
$11-3 r=-7 \Rightarrow 3 r=18 \Rightarrow r=6$
$B={ }^{11} C_{6} a^{5} \frac{1}{3^{6} b^{6}}$
When $A=B$
${ }^{11} C_{5}-a^{6} \frac{1}{32 \times b^{5}}={ }^{11} C_{6} a^{5} \frac{1}{3^{6} b^{6}}$
$\Rightarrow \frac{a}{32}=\frac{1}{3^{6} b}$
$\Rightarrow\{32=729 a b\}$
8. Find the area under the curve $y=|x-1|+|x-2|$ and $y=3$.

Ans. 4
Sol.

$A=\frac{1}{2} \times 2 \times 1+1 \times 2+\frac{1}{2} \times 1 \times 2$
$A=1+2+1=4$
9. Sum of all values of α for which $\hat{i}-2 \hat{j}+3 \hat{k}, 2 \hat{i}-3 \hat{j}+4 \hat{k},(\alpha+1) \hat{i}+2 \hat{k}$ and $9 \hat{i}+(\alpha-8) \hat{j}+6 \hat{k}$ are coplanar is:
(A) 2
(B) 4
(C) -2
(D) -4

Ans. 2
Sol. Let $A(1,-2,3), B(2,-3,4), C(\alpha+1,0,2)$
and $D(9, \alpha-8,6)$
$\overrightarrow{A B}=\hat{i}-\hat{j}+\hat{k}$
$\overrightarrow{A C}=\alpha \hat{i}+2 \hat{j}-\hat{k}$
$\overrightarrow{A D}=8 \hat{i}+(\alpha-6) \hat{j}+3 \hat{k}$
$\therefore[\overrightarrow{\mathrm{AB}} \overrightarrow{\mathrm{AC}} \overrightarrow{\mathrm{AD}}]=0$
$\left|\begin{array}{ccc}1 & -1 & 1 \\ \alpha & 2 & -1 \\ 8 & \alpha-6 & 3\end{array}\right|=0$
$1(6+\alpha-6)+1(3 \alpha+8)+1\left(\alpha^{2}-6 \alpha-16\right)=0$
$\alpha^{2}-2 \alpha-8=0$
$(\alpha-1)^{2}=9 \Rightarrow \alpha=4,-2$
Sum $=2$
10. Find rank of the word "MOTHER" in the dictionary.
(A) 310
(B) 309
(C) 308
(D) 311

Ans. (B)
346215
Sol. MOTHER
223100
$5 I_{0} 4 I_{0} 3 I_{0} 2 I_{0} 1 I_{0} 0 I_{0}$
$5 I_{0} \times 2+4 I_{0} \times 2+3 \times 3{ }_{0}+1 \times 2 I_{0}$
$\Rightarrow 240+48+10+2$
$\Rightarrow 260+48=308+1=309$
11. Find the value of $\tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ}$:
(A) 5
(B) 4
(C) 3
(D) 2

Ans. (B)
Sol. $\left(\tan 9^{\circ}+\cot 9^{\circ}\right)-\left(\tan 27^{\circ}+\cot 27^{\circ}\right)$
$=\frac{2}{\sin 18^{\circ}}-\frac{2}{\sin 54^{\circ}}$
$\{\tan \theta+\cot \theta=2 \operatorname{cosec} 2 \theta\}$
$=\frac{8}{\sqrt{5}-1}-\frac{8}{\sqrt{5}+1}=\frac{8(\sqrt{5}+1-\sqrt{5}+1)}{4}$
$=4$
12. Find the square of distance of point (12, 12, 18) from a plane which passes through line of intersection of planes $\vec{r} .(\hat{i}+\hat{j}+\hat{k})=6$ and $\vec{r} .(2 \hat{i}+3 \hat{j}+4 \hat{k})=-5$ and also passes through point (0, 2, -2).
Ans. 620
Sol. $x+y+z=6$
$2 x+3 y+4 z=-5$
$(x+y+z-6)+\lambda(2 x+3 y+4 z+5)=0$
$\Rightarrow(2-2)-6)+\lambda(0+6-8+5)=0$
$-6+3 \lambda=0$
($\lambda=2$)
$(x+y+z-6)+4 x+6 y+8 z+10=0$
$\Rightarrow 5 x+7 y+9 z+4=0$
\Rightarrow Distance $=\left|\frac{5 \times 12+7 \times 2+9 \times 18+4}{\sqrt{25+49+81}}\right|=\frac{310}{\sqrt{155}}$
Answer $=\left(\frac{310}{\sqrt{155}}\right)^{2}=620$
13. Given that
$20^{19}+2.21 .(20)^{18}+3(21)^{2}(20)^{17}+4(21)^{3}(20)^{16}+\ldots+20(21)^{19}=S$
Find the value of S :

Ans. (20) ${ }^{21}$
Sol. $\quad S=20^{19}+2.21(20)^{18}+3(21)^{2}(20)^{17}+\ldots \ldots+20(21)^{19}$
$\frac{\mathrm{S}}{(21)^{19}}=\left(\frac{20}{21}\right)^{19}+2\left(\frac{20}{21}\right)^{18} \times 3\left(\frac{20}{21}\right)^{17}+\ldots+20$
Let $\frac{S}{(21)^{19}}=k$
So, $k=\left(\frac{20}{21}\right)^{19}+2 .\left(\frac{20}{21}\right)^{18}+3\left(\frac{20}{21}\right)+\ldots .20$
$\frac{20 k}{21}=20\left(\frac{20}{21}\right)+19\left(\frac{20}{21}\right)^{2}+\ldots .+2\left(\frac{20}{21}\right)^{19}+\left(\frac{20}{21}\right)^{20}$
$\frac{k}{21}=20-\left(\frac{20}{21}\right)-\left(\frac{20}{21}\right)^{2}+\ldots-\left(\frac{20}{21}\right)^{20}$
$\Rightarrow \frac{\mathrm{k}}{21}=20-\left[\frac{20}{21}\left[\frac{\left(1-\left(\frac{20}{21}\right)^{20}\right)}{1-\frac{20}{21}}\right]\right]=\frac{\mathrm{k}}{21}=\frac{20(20)^{20}}{(21)^{20}}$
$\Rightarrow \frac{\mathrm{S}}{(21)^{19} \times 21}=\frac{20^{21}}{21^{20}} \Rightarrow \mathrm{~S}=(20)^{21}$
14. Check the statements

Statement: $1(p \Rightarrow q) \vee(\sim p \wedge q)$: tautology
Statement: $2(q \Rightarrow p) \Rightarrow(\sim p \wedge q)$: contradiction
(A) Both are true
(B) Neither 1 nor 2 are true
(C) Only First One is true
(D) Both are true

Ans. (B)
Sol. $\quad(\sim p \vee q) \vee(\sim p \wedge q)$
$\equiv \sim p \vee q$
$\sim(\sim q \vee p) \vee(\sim p \wedge q)$
$\equiv(\sim p \wedge q) \vee(\sim p \wedge q)$
$\equiv \sim p \wedge q$.
Hence neither is true.
15. Check the statements
$\mathrm{S}_{1}:(2023)^{2022}-(1999)^{2022}$ is divisible by 8
$S_{2}: 13(13)^{n}-11 n-13$ is divisible by 144 for infinite values of $n \in N$.
(A) $\mathrm{S}_{1} \& \mathrm{~S}_{2}$ both are correct
(B) $\mathrm{S}_{1} \& \mathrm{~S}_{2}$ both are incorrect
(C) S_{1} is correct S_{2} is incorrect
(D) S_{1} is incorrect \& S_{2} is correct

Ans. (A)
Sol. $\quad S_{1}$: Note that $a^{n}-b^{n}$ is divisible by $a-b$
Hence $(2023)^{2022}-(1999)^{2022}$ is divisible by 24 hence by 8
$S_{2}: 13(12+1)^{n}-11 n-13$
$=13\left[{ }^{n} C_{0} 12^{n}+\ldots+{ }^{n} C_{n-2} 12^{2}+{ }^{n} C_{1} 12+1\right]-11 n-13$
$=144 \mathrm{k}+(156-11) \mathrm{n}$
$=144 \mathrm{k}+145 \mathrm{n}$

Hence if n is a multiple 144 it is divisible by 144 So infinite such n exists.
16. The system of equations.
$P_{1}: x+y+z=6$
$P_{2}: x+2 y+\alpha z=5$
$P_{3}: x+2 y+6 z=\beta$ has
(A) Infinitely many solutions $\alpha=6, \beta=3$
(B) Infinitely many solutions $\alpha=6, \beta=5$
(C) Unique's solutions $\alpha=6, \beta=5$
(D) No solutions $\alpha=6, \beta=5$

Ans. (B)
Sol. $\Delta=\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & \alpha \\ 1 & 2 & 6\end{array}\right|, \Delta_{1}=\left|\begin{array}{ccc}6 & 1 & 1 \\ 5 & 2 & \alpha \\ \beta & 2 & 6\end{array}\right|$
$\Delta=\left|\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & \alpha-1 \\ 1 & 1 & 6-1\end{array}\right| \Delta_{1}=\left|\begin{array}{ccc}0 & 0 & 1 \\ -7 & 2-\alpha & \alpha \\ \beta-12 & -4 & 6\end{array}\right|$
$\Delta=5-\alpha+1 \quad \Delta_{1}=1[28-(2-\alpha)(\beta-12)]$
$\Delta=6-\alpha \quad \Delta_{1}=28+(\alpha-2)(\beta-12)$
For infinite many solution $\Delta=0, \Delta_{1}=\Delta_{2}=\Delta_{3}=0$
$\Delta=0$
$\alpha=6$
When $\Delta_{1}=0, \Rightarrow 28+(6-2)(\beta-12)=0$
$\Rightarrow 4(\beta-12)=-28$
$\Rightarrow \beta=12-7=5$
Now $\Delta_{2}=\left|\begin{array}{lll}1 & 6 & 2 \\ 1 & 5 & 6 \\ 1 & \beta & 6\end{array}\right|=-4(\beta-5)$
$\Delta_{3}=\left|\begin{array}{lll}1 & 1 & 6 \\ 1 & 2 & 5 \\ 1 & 2 & \beta\end{array}\right|=\left|\begin{array}{ccc}1 & 1 & 6 \\ 0 & 1 & -1 \\ 1 & 1 & \beta-6\end{array}\right|=\beta-5$
Hence, at $\alpha=6 \& \beta=5$
$\Delta=0, \& \Delta_{1}=\Delta_{2}=\Delta_{3}=0$
Thus at $\alpha=6 \& \beta=5$ system of equation has infinite solutions.
17. R
(A) 5
(B) 5
(C) 5
(D) 5

Ans. ()
Sol.
18. R
(A) 5
(B) 5
(C) 5
(D) 5

Ans. ()
Sol.
19. R
(A) 5
(B) 5
(C) 5
(D) 5

Ans. ()

Sol.

20. R
(A) 5
(B) 5
(C) 5
(D) 5

Ans. ()
Sol.
21. $\quad \mathrm{R}$
(A) 5
(B) 5
(C) 5
(D) 5

Ans. ()

Sol.

22. R
(A) 5
(B) 5
(C) 5
(D) 5

Ans. ()
Sol.
23. R
(A) 5
(B) 5
(C) 5
(D) 5

Ans. ()
Sol.
24. R
(A) 5
(B) 5
(C) 5
(D) 5

Ans. ()
Sol.
25. R
(A) 5
(B) 5
(C) 5
(D) 5

Ans. ()
Sol.
26. R
(A) 5
(B) 5
(C) 5
(D) 5

Ans. ()
Sol.
27. R
(A) 5
(B) 5
(C) 5
(D) 5

Ans. ()
Sol.
28. R
(A) 5
(B) 5
(C) 5
(D) 5

Ans. ()
Sol.
29. R
(A) 5
(B) 5
(C) 5
(D) 5

Ans. ()
Sol.
(A) 5
(B) 5
(C) 5
(D) 5

Ans. ()
Sol.

