

	CHEMISTRY									
1.	2IO₃⁻ + xI — (1) 6	$\longrightarrow 6I_2$	2 + 12H ₂ (2) 2	0		(3) 10	(4) 12			
Ans.	(3)									
Sol.	$10^{+5}_{3^-} + 51^- + 6H^+ \longrightarrow 31_2 + 3H_2O$									
	On multiply 2IO₃– + 1OI⁻	-	$\longrightarrow 6l_2$	+ 6H ₂ O						
2.	[Mn(Br) ₄] ⁻² , [Co(Cl) ₆] ⁻³ , [FeCl ₆] ^{3–} Correct order of magnetic moment									
Ans.	 (1) [Co(Cl)₆]⁻³ < [Mn(Br)₄]⁻² ≃ [FeCl₆]³⁻ (3) [Mn(Br)₄]⁻² < [Co(Cl)₆]⁻³ < [FeCl₆]³⁻ 									
Sol.	(1) $\left[MnBr_{4}\right]^{2-}$				Νο. ο [.]	No. of unpaired e⁻				
	Mn ²⁺ : [Ar] 3d ⁴ 4s ⁰ 4p ⁰					5				
	[CoCl ₆] ³⁻ CO ³⁺ = [Ar] 3d ⁶ 4s ⁰ 4p ⁰ [FeCl ₆] ³⁻					4				
	$Fe^{3+} = [Ar] 3d^54s^04p^0$					5				
3. Ans.	Electronegativity order of following element P, C At, Br (1) Br > C > At > P (2) C > Br > P > At (3) P > At > C > Br (4) P > C > At > B (1)									
Sol.		С	Ν	0	F					
	Electro Negativity	2.5	Ρ		Cl					
	Negativity	2.1			Br					
					2.8					
					l At					
					2.2					
4.	Match the column									
	List I (A) Alitame					List II (P) Stable at cooking temperature				
	(B) Aspartar	ne			(Q) Unstable at cooking temperature					
	(C) Sucralos				(R) Most sweet					
	(D) Sacchari				(S) First artificial sugar					
	(1) (A)-R; (B)					(2) (A)-Q; (B)-P; (C)-S; (D)-R (4) (A)-S; (B)-R; (C)-P; (D)-Q				
Ans. Sol.	(3) (A)-P; (B) (1))-Q; (C)-	·K; (D)-	5	(4) (A)-5; (B)-R	; (U)-Y; (D)-Q				

JOIN OUR TELEGRAM CHANNEL

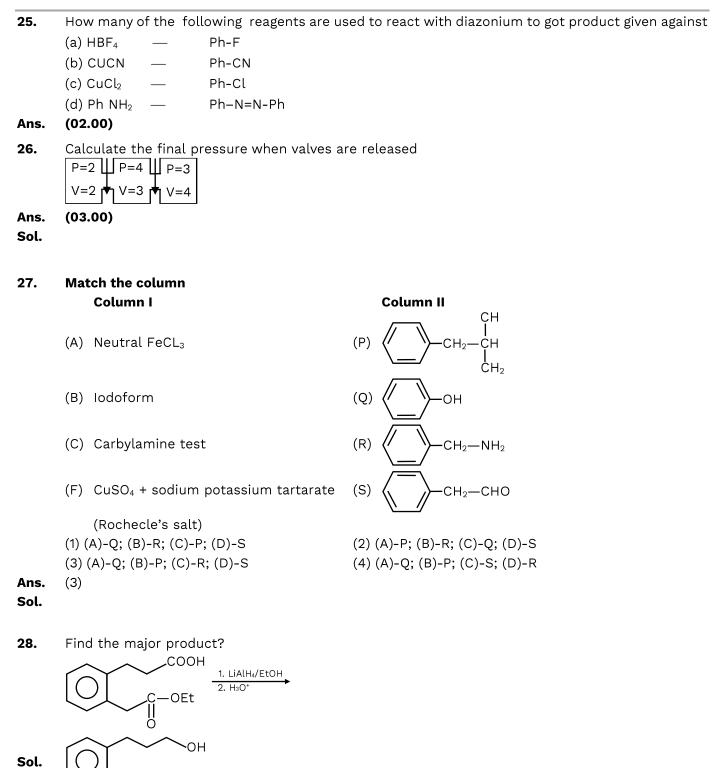
5. How many factors will contribute to covalent character of a compound (a) Polarising power of cation (b) Polarisibility of anion (c) Polarisibility of cation (d) distortion caused by cation (03.00)Ans. Sol. 6. $XeF_2 + SbF_5 \rightarrow [XeF_m]^{+n} [SbF_p]^{q-1}$ The value of m + n + p + qAns. (11) Sol. $XeF_4 + SbF_5 \rightarrow [XeF_3]^{\oplus} [SbF_6]^{\Theta}$ m = 3 p = 6n = +1 q = 1 m + n + p + q = 117. Sulphur is present in how many of following amino acids Leucine, isoleucine, cystine, Methionine, threonine (02.00)Ans. 8. Match the column Concentration in drinking water List-I List-II (A) F-(P) <5 ppm (B) (Q) <50 ppm SO₄²⁻ (C) (R) <500 ppm (D) (S) < 2 ppm Zn (1) (A)-S, (B)-Q, (C)-R, (D)-P (2) (A)-P, (B)-Q, (C)-R, (D)-S (3)(A)-Q, (B)-S, (C)-R, (D)-P (4) (A)-R, (B)-Q, (C)-S, (D)-P Ans. (1) Sol. 9. Which metal can be extracted by leaching using alkali cyanide: (1) Cu (2) Pb (3) Au (4) Sn Ans. (3) Sol. 10. When water gas react with CO in the presence of catalyst the product is? (1) $CO_2 + H_2$ (2) CO₂ + H₂ (3) $CO_2 + H_2O$ (4) None of these Ans. (1) Sol. Coal gasification $C + H_2O(g) \longrightarrow CO + CO_2$ Water gas shift R × n $CO + H_2O(g) \xrightarrow{Catalyst} CO_2(g) = H_2$ 11. in CrO₂Cl₂ oxidation number of Cr is same as (2) Ti (III) (3) V (IV) (1) Mn(VI) (4) Fe (III) Ans. (1) Sol.

JOIN OUR TELEGRAM CHANNEL </

12. Consider the reaction:

$$Cu^{2n} + x^{n} = --- Cu, x_{0} + x_{0}$$
Find product X, will be predominantly:
(1) CL: (2) Br₂ (3) l₂. (4) All halogens are possible
Ans. (3)
Sol. Cu²ⁿ + $\frac{1}{1} = ---- Cu, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$
Statement I: loci radius of L² is greater than Mg²ⁿ
Statement I: loci radius of L² is greater than Mg²ⁿ
Statement I: and statement II are correct
(2) Statement I is incorrect but statement II is incorrect
(3) Statement I is incorrect but statement II is correct
(4) Statement I is incorrect but statement II is correct
Ans. (1)
Sol.
14. Mass of the proton is 6×10^{-24} g and mass of electron is 9.1×10^{-26} g.
if the are having same wavelength find the ratio of their momentum
(1) $\frac{1}{1}$ (2) $\frac{1}{2}$ (3) $\frac{1}{4}$ (4) $\frac{2}{1}$
Ans. (1)
Sol.
 $\lambda = \frac{h}{p} \Rightarrow P = \frac{h}{\lambda}$
 $= P_{1}: P_{2}$
 $= 1: 1$
15. Why gypsum is added to cement.
Sol. Theory based
16. Hydrocarbon X on ezonolysis give propanone (acetone) and ethanal. find the molecular weight of compound X?
Ans. (1.00)
Sol. $H_{3}C^{-C}C=CH-CH_{3} = O_{4} = \frac{P}{0.3}$
 $Cro_{2} = ---C = \frac{4}{12} = \frac{x}{0.3}$
 $x_{1} = \frac{11}{10}$ g.
18. Which of the following is most stable, diamagnetic and octahedral in Nature?
(1) $(Co(CN)_{4})^{2}$ (2) $(Co(CL_{3})^{2}$ (3) $(Co(L_{4}O)_{4})^{2}$ (4) $[Ni(N+L_{3})]^{2}$
Ans. (1.00)

Ans. Sol.


JOIN OUR TELEGRAM CHANNEL

19.	How many of the following graphs show correct representation of freundlich adsorption isotherm										
	?										
	x m	log x/m	x m	x m							
	Р	log P	С		P ¹ /2						
Ans.	(02.00)										
Sol.	Freundlich adsorption isotherm equation										
	$\frac{x}{m} = RP^{1/n}$										
20.	Statement I:If heat	is given to a system th	ne temp always	increases							
	Statement II: If work done by system is positive, volume always increases										
	(1) statement I and statement II are correct										
	(2) statement I and statement II are incorrect										
	(3) Statement I is correct but statement II is incorrect										
		ncorrect but statement	t II is correct								
Ans.	(4)										
Sol.											
21. Ans. Sol.	 Assertion: butanol has highest boiling point than ethoxyethane. Reason: because of more hydrogen bonding. (1) Both A and R are true and R is the correct explanation of A (2) Both A and R are true but R is NOT the correct explanation of A (3) A is true but R is false (4) A is false but R is true (1) 										
22.	Which cell representation is correct for the reaction give below: H ₂ + 2AgCl \longrightarrow 2H ⁺ + 2Ag + 2Cl ⁻										
	(1) Pt H ₂ HCl AgCl A	-	(2) Pt H ₂ HCl	AgCl Pt							
	(3) Ag AgCl HCl H ₂	Pt	(4) Pt AgCl H(Cl H₂ Pt							
Ans.	(1)										
23.	How many statements are correct:										
		ation between rate cons				gy is negative					
	(b) If the activation energy is zero, rate constant is temperature independent										
(c) If rate constant increases with increase of temperature, activation energy is positive (d) If rate constant decreases with increase in temperature, activation energy is negative											
Anc		decreases with increas	se in temperatu	re, activation	energy is nega	live					
Ans. Sol.	(02.00)										
24.	-	Syn gas produces :D	(-) · ·								
_	(1) Ethanol	(2) Methanol	(3) Methane	(4) N	Methanonic aci	d					
Ans.	(2)										

OН