Use Code AT24 To Buy Unacademy Subscription

PHYSICS

1. Two bodies with initial velocity $40 \mathrm{~m} / \mathrm{s}$ and $60 \mathrm{~m} / \mathrm{s}$ are projected at angle 60° and 30° respectively. Find the ratio of their range.
Ans. $\frac{4}{9}$
Sol. $\frac{R_{1}}{R_{2}}=\frac{u_{1}^{2} \sin 2 \theta_{1}}{u_{2}^{2} \sin 2 \theta_{2}}$
$=\left(\frac{40}{60}\right)^{2} \frac{\sin 60}{\sin 20}$
$=\frac{4}{9} \times 1$
$=\frac{4}{9}$
2. Mass of Proton is $6 \times 10^{-24} \mathrm{~g}$ and mass of electron is $9.1 \times 10^{-28} \mathrm{~g}$. If they are having same wavelength find the ratio of their momentum.
Ans. 1:1
Sol. $\quad \lambda \propto \frac{1}{P}$
$\frac{\lambda_{1}}{\lambda_{2}}=\frac{P_{2}}{P_{1}}$
$\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{\lambda_{1}}{\lambda_{2}}=1: 1$
3. In the circuit, inductance of the inductor is 7.5 mH , capacitance is $12 \mu \mathrm{~F}$. If the maximum charge stored in the capacitor is $27 \mu \mathrm{C}$ then find the maximum current in the circuit.
Ans. 0.09 A
Sol. $\quad \frac{\mathrm{q}_{\max }^{2}}{2 \mathrm{C}}=\frac{1}{2} \mathrm{~L}\left(\mathrm{I}_{\max }\right)^{2}$
$\frac{\left(27 \times 10^{-6}\right)^{2}}{2 \times 12 \times 10^{-6}}=\frac{1}{2} \times 7.5 \times 10^{-3} \times I_{\max }^{2}$
$I_{\text {max }}^{2}=0.81 \times 10^{-2} \mathrm{~A}$
$I_{\max }=0.09 \mathrm{~A}$
4. What is the dimensional formula of $\left(\frac{1}{\mu_{0} \varepsilon_{0}}\right)$?

Ans. $\quad\left[L^{2} \mathrm{~T}^{-2}\right]$
Sol. $\frac{1}{\mu_{0} \varepsilon_{0}}=C^{2}$
Dimensional formula $=\left[\mathrm{L}^{2} \mathrm{~T}^{-2}\right]$

Use Code AT24 To Buy Unacademy Subscription

5. If the momentum of a body is increased by 50%, find the percentage change in its kinetics energy.

Ans. 125\%
Sol. $p^{\prime}=1.5 p$
$k=\frac{p^{2}}{2 m}$
$k^{\prime}=\frac{\left(p^{\prime}\right)^{2}}{2 m}=\frac{(1.5 p)^{2}}{2 m}=2.25 \frac{p^{2}}{2 m}=2.25 k$
$\frac{\Delta \mathrm{k}}{\mathrm{k}} \times 100 \%=\frac{1.25}{1} \times 100 \%=125 \%$
6. Identify the graph which represents the relationship between Electric field and r for an insulating sphere. Where r is distance from the center of sphere.

Ans.

Sol. $\quad E_{\text {in }}=\frac{k Q r}{R^{3}} \quad E_{a t}=\frac{k Q}{R^{2}}$

7. In a conducting wire of cross section area $25 \mathrm{~mm}^{2}$, current flowing is 2 A . If the number of electrons flowing per unit volume is 2×10^{28}, find the drift velocity.
Ans. 0.025
Sol. $\quad I=n e A v_{d}$
$2=\left(2 \times 10^{28}\right) \times\left(1.6 \times 10^{-19}\right) \times\left(25 \times 10^{-6}\right) v_{d}$
$v_{d}=\frac{2}{2 \times 1.6 \times 25 \times 10^{3}}=\frac{1}{40 \times 10^{3}}=2.5 \times 10^{-5} \mathrm{~m} / \mathrm{s}$
$=0.025 \mathrm{~mm} / \mathrm{s}$
8. Moment of inertia for a semi-circular ring of mass M and radius R is given by $\frac{M R^{2}}{x}$. Find the value of x.
Ans. 1
Sol. $\quad I=M R^{2}$

$$
\text { So, } x=1
$$

9. Statement -1: Potential energy of a revolving satellite is half of the total energy of the satellite.

Statement -2: kinetic energy of a revolving satellite is half of the total energy of the satellite.
(1) TT
(2) TF
(3) FT
(4) FF

Use Code AT24 To Buy Unacademy Subscription

Ans. (4)
Sol. P.E. + K.E. = T.E.
$|K . E .|=|$ T.E. $|=\frac{\mid \text { P.E. } \mid}{2}$
10. Two forces of magnitude F_{1} and F_{2} are perpendicular to each other. Find the magnitude of resultant force.

Ans. $\sqrt{\mathrm{F}_{1}^{2}+\mathrm{F}_{2}^{2}}$
Sol. $F_{R}=\sqrt{F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2} \cos \theta}$
11. A particle of mass 500 gm having velocity $\vec{v}=2 t \hat{i}+3 t^{2} \hat{j}$ and force acting on the particle is $\vec{F}=\hat{i}+x t \hat{j}$. Find the value of x.
Ans. $3 t$
Sol. $\vec{v}=2 t \hat{i}+3 t^{2} \hat{j}, m=500 g m=\frac{1}{2} k g$
$\vec{F}=\hat{i}+x t \hat{j}$
$\vec{a}=2 \hat{i}+6 t \hat{j}$
$\vec{F}=\frac{1}{2}(2 \hat{i}+6 t \hat{j})$
$=\hat{i}+3 t \hat{j}$
$x=3 t$
12. Magnetic field at the center of a long solenoid is $1.6 \times 10^{3} \mathrm{~T}$. If there are 8 turns in 1 cm of length, then find the value of current flowing through the solenoid.

Ans. $\frac{1}{2 \pi} \times 10^{7} \mathrm{~A}$
Sol. $\quad B=\mu_{0} n i$
$i=\frac{B}{\mu_{0} n}=\frac{1.6 \times 10^{3}}{4 \pi \times 10^{-7} \times 800}=\frac{16 \times 10^{7}}{32 \pi}$
$=\frac{1}{2 \pi} \times 10^{7} \mathrm{~A}$
13. Weigh of a particle at the surface of earth is 400 N . Find its weight at $\frac{R}{2}$ depth. ($R=$ radius of earth)

Ans. 200
Sol. $\quad g^{1}=g_{0}\left(1-\frac{d}{R_{e}}\right)$
$=g_{0}\left(1-\frac{1}{2}\right)=\frac{g_{0}}{2}$
$W^{1}=W / 2=200 N$.

Use Code AT24 To Buy Unacademy Subscription

14. In a nuclear reaction,
$X^{242} \rightarrow Y^{121}+Y^{121}$
Binding energy/Nucleon of $X=7.6 \mathrm{MeV}$
Binding energy/Nucleon of $Y=8.1 \mathrm{MeV}$
Then find the Q - value of reaction.
Ans. 121 MeV
Sol. $\quad \mathrm{Q}-$ value $=\sum \mathrm{B} \cdot \mathrm{E}_{\mathrm{P}}-\sum \mathrm{B} \cdot \mathrm{E}_{\mathrm{R}}$
15. A wire of young modulus, $Y=7 \times 10^{11}$ is stretched. The strain developed in the wire is 0.04%. Find the energy stored per unit volume.
Ans. $56 \times 10^{3} \mathrm{~J}$
Sol. $\frac{U}{V}=\frac{1}{2} \times Y \times(\text { strain })^{2}$
$=\frac{1}{2}\left(7 \times 10^{11}\right)\left(16 \times 10^{-8}\right)$
$=56 \times 10^{3} \mathrm{~J}$
16. Two plane mirrors A \& B separated by 10 cm are placed in front of each other. A point object is placed at 2 cm from mirror A. Find the distance of $2^{\text {nd }}$ closest image from mirror A.
Ans. 18 cm

17. Sound wave is travelling through a 40 cm long pipe at fundamental frequency. Given that velocity is sound air is $340 \mathrm{~m} / \mathrm{s}$ then find the frequency of wave.
Ans. 425 Hz
Sol. $\quad \ell=\frac{\lambda}{2} \Rightarrow \lambda=2 \ell=80 \mathrm{~cm}$
$V=f \lambda$
$f=\frac{v}{\lambda}=\frac{340 \times 100}{80}=425 \mathrm{~Hz}$

Use Code AT24 To Buy Unacademy Subscription

Sol. Current $\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{4}{16}=\frac{1}{4} \mathrm{~A}$
$\frac{\mathrm{V}_{\mathrm{c}_{1}}}{\mathrm{~V}_{\mathrm{C}_{2}}}=\frac{2.5}{2}=1.25$

19. An air bubble having volume $1 \mathrm{~cm}^{3}$ at depth 40 m inside water, on coming to the surface has volume:
Ans. $5 \mathrm{~cm}^{3}$
Sol. $\quad P_{1} V_{1}=P_{2} V_{2}$
$\left(10^{5}+\rho g h\right) \times\left(1 \times 10^{-6}\right)=\left(10^{5}\right) \times V_{2}$
$\left[10^{5}+\left(10^{3} \times 10 \times 40\right)\right] \times 10^{-6}=10^{5} V_{2}$
$5 \times 10^{5} \times 10^{-6}=10^{5} V_{2}$
$\mathrm{V}_{2}=5 \mathrm{~cm}^{3}$
20. An engine horns a whistle of frequency 400 Hz . If the speed of engine is $10 \mathrm{~m} / \mathrm{s}$, then find the frequency of sound received by passenger sitting in last boggie of the train. (Length of train is 500 m).
Ans. 400 Hz
Sol. Velocity of source and receiver is same, therefore, frequency received will be same as frequency at source.
Frequency receiver $=400 \mathrm{~Hz}$
21. The height of antenna is 98 m . The radius of earth is 6400 km . The area up to which it will transmit signal is-
Ans. $\quad 38424 \times 10^{5} \mathrm{~m}^{2}$
Sol. Distance covered by the signal from antenna
$d=\sqrt{2 R h}$
Area covered $=\pi \mathrm{d}^{2}=2 \pi \mathrm{Rh}$
$=2 \times \pi \times 6400 \times 10^{3} \times 98$
$=2 \times \frac{22}{7} \times 64 \times 10^{5} \times 98$
$=38424 \times 10^{5} \mathrm{~m}^{2}$
22. If mass, radius of cross-section and height of a cylinder are (0.4 ± 0.01) $\mathrm{g},(6 \pm 0.03) \mathrm{m}$ and ($8 \pm$ $0.04) \mathrm{m}$. The maximum percentage of error in the measurement of density of cylinder is:
Ans. 4\%

Use Code AT24 To Buy Unacademy Subscription

Sol. $\quad d=\frac{m}{A h}$

$$
\begin{aligned}
& \frac{\Delta d}{d}=\frac{\Delta m}{m}+2 \frac{\Delta r}{r}+\frac{\Delta h}{h} \\
& =\frac{0.01}{0.4}+2\left(\frac{0.03}{6}\right)+\frac{0.04}{8} \\
& =\frac{1}{40}+\frac{1}{100}+\frac{1}{200} \\
& =\frac{5+2+1}{200}=\frac{8}{200}=\frac{4}{100} \\
& \frac{\Delta d}{d} \times 100=\frac{4}{100} \times 100=4 \%
\end{aligned}
$$

23. A charge particle moves at an angle with magnetic field in a region of uniform magnetic field intensity. The path traced by it will be:
(1) Circular
(2) Straight Line
(3) Cycloid
(4) Helical

Ans. (4)

Sol.

Path will be helical.
24. Statement -1: If heat is given to a gas, its temperature must increase.

Statement -2: If positive work is done, volume of gas must increase.
(1) TT
(2) TF
(3) FT
(4) FF

Ans. (3)
25. An electric dipole with dipole moment $5 \mu \mathrm{Cm}$ is placed in a region with uniform electric field 600 N/C at angle 90° with the direction of field. The torque experienced by the dipole (in milli Newton - metre) is equal to \qquad .
Ans. 3
Sol. $\tau=P E \sin \theta$
$=5 \times 10^{-6} \times 600 \times \sin 90^{\circ}$
$=3 \times 10^{-3} \mathrm{~N}-\mathrm{m}$
$\tau=3 \mathrm{mN}-\mathrm{m}$
26. Secondary mirror is used in telescope to:
(1) Remove spherical aberration
(2) Remove chromatic aberration
(3) Both of the above
(4) None of these

Ans. (1)

Use Code AT24 To Buy Unacademy Subscription

27. Wave form of input signal A and B are shown in the figure. Find the output wave form.
A:

B:

Ans.

Sol. $\overline{(\bar{A} \cdot \bar{B})}=A+B$
28. Non-magnetic core in the galvanometer is used to:
(1) Reduce Eddy current
(2) Increase sensitivity of G.
(3) Produce radial magnetic field
(4) None of these

Ans. (2)

